高考數(shù)學(xué)培訓(xùn)課_高考數(shù)學(xué)上冊知識點(diǎn)
感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的`實(shí)際背景。
(2)一元二次不等式
學(xué)習(xí)從來無捷徑,循序漸進(jìn)登岑嶺。若是說學(xué)習(xí)一定有捷徑,那只能是用功,由于起勁永遠(yuǎn)不會騙人。學(xué)習(xí)需要用功,做任何事情都需要用功。下面是小編給人人整理的一些數(shù)學(xué)的知識點(diǎn),希望對人人有所輔助。
“包羅”關(guān)系—子集
注重:有兩種可能(A是B的一部門,;(A與B是統(tǒng)一聚集。
反之:聚集A不包羅于聚集B,或聚集B不包羅聚集A,記作AB或BA
“相等”關(guān)系:A=B(且則
實(shí)例:設(shè)A={x|x0}B={-“元素相同則兩聚集相等”
即:①任何一個(gè)聚集是它自己的子集。A(A
②真子集:若是A(B,且A(B那就說聚集A是聚集B的真子集,記作AB(或BA)
③若是A(B,B(C,那么A(C
④若是A(B同時(shí)B(A那么A=B
不含任何元素的聚集叫做空集,記為Φ
劃定:空集是任何聚集的子集,空集是任何非空聚集的真子集。
有n個(gè)元素的聚集,含有個(gè)子集,-真子集
軌跡,包羅兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都相符給定的條件,這叫做軌跡的純粹性(也叫做需要性);凡不在軌跡上的點(diǎn)都不相符給定的條件,也就是相符給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完整性(也叫做充實(shí)性)。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。
確立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
寫出點(diǎn)M的聚集;
列出方程=0;
化簡方程為最簡形式;
磨練。
二、求動(dòng)點(diǎn)的軌跡方程的常用方式:求軌跡方程的方式有多種,常用的有直譯法、界說法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方式通常叫做直譯法。
界說法:若是能夠確定動(dòng)點(diǎn)的軌跡知足某種已知曲線的界說,則可行使曲線的界說寫出方程,這種求軌跡方程的方式叫做界說法。
相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y示意相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后裔入點(diǎn)P的坐標(biāo)(x0,y0)所知足的曲線方程,整理化簡捷獲得動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方式叫做相關(guān)點(diǎn)法。
參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,獲得方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方式叫做參數(shù)法。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
,要學(xué)會整合知識點(diǎn),提高知識理解和記憶能力。 把需要學(xué)習(xí)的信息、掌握的知識分類,做成思維導(dǎo)圖或知識點(diǎn)卡片,這樣會讓你的大腦、思維條理清醒,方便記憶、溫習(xí)、掌握。同時(shí),要學(xué)會把新知識和已學(xué)知識聯(lián)系起來,不斷糅合、完善你的知識體系。這樣能夠促進(jìn)理解,加深記憶。,交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,獲得不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方式叫做交軌法。
求動(dòng)點(diǎn)軌跡方程的一樣平常步驟:
①建系——確立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所知足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證實(shí)——證實(shí)所求方程即為相符條件的動(dòng)點(diǎn)軌跡方程。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
⒈確立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
⒉寫出點(diǎn)M的聚集;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌磨練。
二、求動(dòng)點(diǎn)的軌跡方程的常用方式:求軌跡方程的方式有多種,常用的有直譯法、界說法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方式通常叫做直譯法。
⒉界說法:若是能夠確定動(dòng)點(diǎn)的軌跡知足某種已知曲線的界說,則可行使曲線的界說寫出方程,這種求軌跡方程的方式叫做界說法。
⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y示意相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后裔入點(diǎn)P的坐標(biāo)(x0,y0)所知足的曲線方程,整理化簡捷獲得動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方式叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,獲得方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方式叫做參數(shù)法。
⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,獲得不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方式叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一樣平常步驟
①建系——確立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所知足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證實(shí)——證實(shí)所求方程即為相符條件的動(dòng)點(diǎn)軌跡方程。